Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 11(14)2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35890481

RESUMO

This study was designed to investigate the effects of Azospirillum brasilense and Bradyrhizobium sp. co-inoculation coupled with N application on soil N levels and N in plants (total N, nitrate N-NO3- and ammonium N-NH4+), photosynthetic pigments, cowpea plant biomass and grain yield. An isotopic technique was employed to evaluate 15N fertilizer recovery and derivation. Field trials involved two inoculations-(i) single Bradyrhizobium sp. and (ii) Bradyrhizobium sp. + A. brasilense co-inoculation-and four N fertilizer rates (0, 20, 40 and 80 kg ha-1). The co-inoculation of Bradyrhizobium sp. + A. brasilense increased cowpea N uptake (an increase from 10 to 14%) and grain yield (an average increase of 8%) compared to the standard inoculation with Bradyrhizobium sp. specifically derived from soil and other sources without affecting 15N fertilizer recovery. There is no need for the supplementation of N via mineral fertilizers when A. brasilense co-inoculation is performed in a cowpea crop. However, even in the case of an NPK basal fertilization, applied N rates should remain below 20 kg N ha-1 when co-inoculation with Bradyrhizobium sp. and A. brasilense is performed.

2.
Plants (Basel) ; 10(7)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209953

RESUMO

Sustainable management strategies are needed to improve agronomic efficiency and cereal yield production under harsh abiotic climatic conditions such as in tropical Savannah. Under these environments, field-grown crops are usually exposed to drought and high temperature conditions. Silicon (Si) application could be a useful and sustainable strategy to enhance agronomic N use efficiency, leading to better cereal development. This study was developed to explore the effect of Si application as a soil amendment source (Ca and Mg silicate) associated with N levels applied in a side-dressing (control, low, medium and high N levels) on maize and wheat development, N uptake, agronomic efficiency and grain yield. The field experiments were carried out during four cropping seasons, using two soil amendment sources (Ca and Mg silicate and dolomitic limestone) and four N levels (0, 50, 100 and 200 kg N ha-1). The following evaluations were performed in maize and wheat crops: the shoots and roots biomass, total N, N-NO3-, N-NH4+ and Si accumulation in the shoots, roots and grain tissue, leaf chlorophyll index, grain yield and agronomic efficiency. The silicon amendment application enhanced leaf chlorophyll index, agronomic efficiency and N-uptake in maize and wheat plants, benefiting shoots and roots development and leading to a higher grain yield (an increase of 5.2 and 7.6%, respectively). It would be possible to reduce N fertilization in maize from 185-180 to 100 kg N ha-1 while maintaining similar grain yield with Si application. Additionally, Si application would reduce N fertilization in wheat from 195-200 to 100 kg N ha-1. Silicon application could be a key technology for improving plant-soil N-management, especially in Si accumulator crops, leading to a more sustainable cereal production under tropical conditions.

3.
Sci Rep ; 10(1): 6160, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32273589

RESUMO

This research was developed to investigate whether inoculation with Azospirillum brasilense in combination with silicon (Si) can enhance N use efficiency (NUE) in wheat and to evaluate and correlate nutritional and productive components and wheat grain yield. The study was carried out on a Rhodic Hapludox under a no-till system with a completely randomized block design with four replications in a 2 × 2 × 5 factorial scheme: two liming sources (with Ca and Mg silicate as the Si source and limestone); two inoculations (control - without inoculation and seed inoculation with A. brasilense) and five side-dress N rates (0, 50, 100, 150 and 200 kg ha-1). The results of this study showed positive improvements in wheat growth production parameters, NUE and grain yield as a function of inoculation associated with N rates. Inoculation can complement and optimize N fertilization, even with high N application rates. The potential benefits of Si use were less evident; however, the use of Si can favour N absorption, even when associated with A. brasilense. Therefore, studies conducted under tropical conditions with Ca and Mg silicate are necessary to better understand the role of Si applied alone or in combination with growth-promoting bacteria such as A. brasilense.


Assuntos
Azospirillum brasilense/metabolismo , Produção Agrícola/métodos , Nitrogênio/metabolismo , Silício/metabolismo , Triticum/crescimento & desenvolvimento , Compostos de Cálcio/metabolismo , Fertilizantes , Silicatos de Magnésio/metabolismo , Silicatos/metabolismo , Triticum/metabolismo
4.
PLoS One ; 15(4): e0230954, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32267854

RESUMO

Alternative management practices are needed to minimize the need for chemical fertilizer use in non-leguminous cropping systems. The use of biological agents that can fix atmospheric N has shown potential to improve nutrient availability in grass crops. This research was developed to investigate if inoculation with Azospirillum brasilense in combination with silicon (Si) can enhance N use efficiency (NUE) in maize. The study was set up in a Rhodic Hapludox under a no-till system, in a completely randomized block design with four replicates. Treatments were tested in a full factorial design and included: i) five side dress N rates (0 to 200 kg ha-1); ii) two liming sources (Ca and Mg silicate and dolomitic limestone); and iii) with and without seed inoculation with A. brasilense. Inoculation with A. brasilense was found to increase grain yield by 15% when N was omitted and up to 10% when N was applied. Inoculation also increased N accumulation in plant tissue. Inoculation and limestone application were found to increase leaf chlorophyll index, number of grains per ear, harvest index, and NUE. Inoculation increased harvest index and NUE by 9.5 and 19.3%, respectively, compared with non-inoculated plots. Silicon application increased leaf chlorophyll index and N-leaf concentration. The combination of Si and inoculation provided greater Si-shoot accumulation. This study showed positive improvements in maize growth production parameters as a result of inoculation, but the potential benefits of Si use were less evident. Further research should be conducted under growing conditions that provide some level of biotic or abiotic stress to study the true potential of Si application.


Assuntos
Azospirillum brasilense/fisiologia , Nitrogênio/química , Silício/química , Solo/química , Zea mays/crescimento & desenvolvimento , Produtos Agrícolas/química , Fertilizantes , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Estresse Fisiológico/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...